Learning Mobile Device Location from Vibration

Ilari Shafer | ishafer@cs.cmu.edu

"Raw

Motivation

Context-Aware Computing

Semantic ⁶⁶ Where is What am I Location my phone? doing? ??

Mobile devices that react based on location

• How can we identify the location of a device?

Approach

• Use active sensing: vibrator + accelerometer

Location Labels

• Classify semantic location (table, chair, ...)

Related Work

• Obtain coarse system response

Interest in discriminating time-series data for device context
Activity recognition: Thresholding, KNN for x/y/z values [aampl]
Audio classification: Mean, stdev, energy, correlation [cenceme]
Typically labels from user-trained fingerprints [survey, surroundsense, darwin]

Academic: Mobile Sensing @ Dartmouth, SyNRG @ Duke, ...
Industry: Intel sensor architecture & SENS project, ...

$$\begin{bmatrix} x_1 \dots x_n \end{bmatrix} \qquad n = \frac{t_{end} - t_{start}}{SamplePeriod \cdot BinWidth}$$
$$\begin{bmatrix} z_1 \dots z_n \end{bmatrix}$$

(binned into fewer samples; value of bin is the mean of its samples)

Selected Results

Analyses: 10-fold cross-validation on 70% of data

Raw: Promise, but expensive → Best classifier (SVM) shown in bold – robust to many irrelevant features • Achieves ~71% CV accuracy on full set

brate brate ssive Ssive

For comparison with existing approaches: gather samples from four locations *without* vibration.

- Best (solid) classifier performs
 significantly better with active data
- On full location set, J48 achieves consistent >78% CV accuracy, 0.5s t_{build}

Learner Setup

Measurements: 7 locations **x** ~230 samples ea.

Evaluation Setup: Algorithms + Conditioning

- Classifiers with compact models (avoid storing all data, eg KNN)
- Representative approaches. Implementations: Weka Toolkit

Classifier	Description
NaiveBayes	Strong conditional independence assumption
J48 (tree)	C4.5 algorithm (extends ID3) based on info. gain
LibSVM	SVM with radial basis function as kernel
Logistic	Logistic Regression classifier with max iterations
NBTree	Decision tree with Naïve Bayes at leaves

• Add fill for measurement gaps, ignore mean (from recalibration)

 Training time becomes large for BinWidth=1 (one feature per datapoint)

Test Accuracy

Plot: result of applying best classifier from model selection on test data, 95% CI for mean.

Conclusions

- Exploit active sensing to distinguish "hard" locations
 Reduce need for user training through device specificity
 Features beyond summary stats → better classification
- *Tradeoffs:* feature space size, training time, on-lining *Future work:* test across multiple devices & with users

Acknowledgements + References

