Learning Mobile Device Location from Vibration
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Motivation Feature Extraction

Goal: pick a minimal set of summary features (->11)
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Evaluation Setup: Algorithms + Conditioning Conclusions
» Classifiers with compact models (avoid storing all data, eg KNN) | . . o . ,
- Representative approaches. Implementations: Weka Toolkit » Exploit active sensing to distinguish “hard” locations

« Reduce need for user training through device specificity

» Features beyond summary stats = better classification

NaiveBayes Strong conditional independence assumption

J48 (tree) C4.5 algorithm (extends ID3) based on info. gain  Jradeoffs: feature space size, training time, on-lining
LibSVM SVM with radial basis function as kernel » Future work: test across multiple devices & with users
_ogistic Logistic Regression classifier with max iterations

NBTree Decision tree with Naive Bayes at leaves
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 Add fill for measurement gaps, ignore mean (from recalibration)




